
A Workflow for generation of LDP

Noorani Bakerally, Antoine Zimmermann and Olivier Boissier

Univ Lyon, IMT Mines
Saint-Étienne, CNRS, Laboratoire Hubert Curien UMR 5516, F-42023 Saint-Étienne, France

{noorani.bakerally,antoine.zimmermann,olivier.boissier}@emse.fr

Abstract. Linked Data Platform 1.0 (LDP) is the W3C Recommendation for
exposing linked data in a RESTful manner. While several implementations of
the LDP standard exist, deploying an LDP is still manual and tighly coupled
to the chosen implementation. As a consequence, the same design (in terms
of how the data is organised) is difficult to reuse in different LDP deployments.
In this paper we propose a workflow for LDP generation to automatize the
generation of LDPs from static, dynamic and heterogeneous data sources while
keeping the design loosely coupled from the implementation.

Keywords: RDF, Linked Data, Linked Data Platform

1 Introduction

The aim of the Linked Data Platform (LDP) 1.0 W3C Recommendation [7] is to
standardize RESTful access to RDF data. Linked data platforms complying with the
LDP standard, which we refer to as LDPs, can be useful in different contexts such
as open data, where there is need to have a homogeneous view and access to data to
facilitate their exploitation.

Currently, a number of LDP implementations exist. They are mostly referenced in
the standard conformance report1. Yet, deploying an LDP from existing data sources
is still complex. Currently, it requires the development of LDP generators to transform
data resources from their native structures to LDP resources which can be deployed in
LDP stores. Moreover, while doing so, it is possible that design decision related to the
final platform are hardcoded in the LDP generator enhancing a tight coupling between
the design and implementation complexifying both the maintainability and reusability.
In summary, current LDP implementations are in their early stages as there is little
to no support for automating the generation and deployment of LDPs from existing
data, even if it is already in RDF.

In our previous works, we described an approach [1] for the generation of LDPs and a
simple proof of concept [3] of doing so from static and heterogeneous data sources using
existing LDP implementations. In this paper, our objective is to present the extension of
the former proof of concept as a refined approach that we refer to as the LDP generation
workflow. In addition to considering static and heterogeneous data sources, the novelty
of this approach is the ability to deploy LDPs on dynamic data sources and to provide
fresh data for LDP resources at query time, a feature which is not yet natively supported

1 https://www.w3.org/2012/ldp/hg/tests/reports/ldp.html on 11 March
2018

2 A Workflow for generation of LDP

directly by any existing LDP implementation. To this end, first we provide an overview
of our approach (Sec. 2) followed by its implementation (Sec. 3) and demonstration in
different scenarios (Sec. 4). Finally, we conclude with an outlook on future works (Sec. 5).

2 Our Approach: The LDP Generation Workflow

Our approach is based on model-driven engineering that involves using models as
first-class entities and transforming them into running systems by using generators
or by dynamically interpreting the models at run-time [5]. Doing so enables separation
of concerns thus guaranteeing higher reusability of systems’ models [8].

LDP
POST

 Requests

LDPizer LDP Server

design
document

 LDP Dataset

LDP Dataset
Deployer

Deployment Parameters

LDP-DLwritten in

LDP Dataset Server

Data
sources

Fig. 1: General overview of the LDP Generation Workflow

Fig. 1 shows a general overview of the approach that includes two processes: LDPiza-
tion and deployment. In the former process, the LDPizer consumes a design document
written in our language, LDP-DL, that we use as a domain-specific language, a core
component of model-driven engineering, to explicitly describe LDP design models.
Concerning LDP-DL, its abstract syntax is described in our technical report [4] while its
concrete RDF syntax of LDP-DL is given in its specification [2]. The LDPizer interprets
the model and exploits the data sources to generate what we call an LDP dataset,
which is a structure to store LDP resources introduced to abstract ways from how
current implementations store resources. The deployment process involves configuring
the LDP and loading the LDP dataset into it. It can be done in two ways based on the
nature of the LDP server. First, if the LDP server accepts POST requests, an LDP
Dataset Deployer can generate and send such requests for each resource contained in
the LDP dataset. Second, using an LDP server that can directly consume the LDP
dataset and expose resources from it. For now, our approach only requires the design
document from which the entire LDP can be automatically generated.

3 Implementation

In this section, we describe our implementation which consists of a tool for every
component from the LDP generation workflow.

A Workflow for generation of LDP 3

LDP POST
 Requests

ShapeLDP LDP Servers

design
document

 Static LDP Dataset

POSTerLDP

Deployment Parameters

LDP Design
Language

written in

SPARQL
Generate

 Dynamic LDP Dataset

HubbleLDP

InterLDP
Data

sources

Fig. 2: Implementation of our LDP Generation Workflow

ShapeLDP 2 is an LDPizer that interprets documents written in LDP-DL refered
to as design documents. To exploit heterogeneous data sources, lifting rules specified
for DataSources in SPARQL-Generate [6] are used. ShapeLDP can process design
documents in static evaluation (resp. dynamic evaluation) to produce a static (resp.
dynamic) LDP dataset. The difference between these two types of LDP dataset is that
the static one contains the materialized RDF graph of the LDP resource while the
dynamic one contains the information to generate this RDF graph and can thus be
used for dynamic or real-time data sources. The algorithms used in ShapeLDP and the
formal models of LDP dataset (static or dynamic) are given in our technical report [4]

InterLDP 3 is an LDP server which can directly consume an LDP dataset (static or
dynamic) and expose resources from it. It was validated against the conformance tests
of the LDP read interactions.4. In the static mode, it consumes static LDP dataset
and exposes resources from it. In the dynamic mode, it is able to consider dynamic and
real-time heterogeneous or RDF data sources and process the request for a particular
resource and generate its RDF graph at query time.

POSTerLDP 5 is the implementation of the LDP Datset Deployer. It consumes a static
LDP dataset and deployment parameters: base URL of LDP server and optionally
the username and password for basic authentication on the server. It can funtion in
two different modes: append and update. In the append mode, it sends only POST
request to the server to create resources from the LDP dataset. In the update mode, for
resources on the LDP having similar URLs with that from the LDP dataset, a PUT
request with the RDF graph from the LDP dataset is sent for those resources.

HubbleLDP 6 is an LDP browser that can be used to browse resources on an LDP
and view their content. Fig. 3 shows a screenshot which is actually an instance of
it is running at http://bit.ly/2BGYl9X loaded with an LDP7 about DCAT
catalogue8 and organization of its datasets in different languages.

2 https://github.com/noorbakerally/ShapeLDP
3 https://github.com/noorbakerally/InterLDP
4 The conformance report is available at https://w3id.org/ldpdl/InterLDP/
execution-report.html

5 https://github.com/noorbakerally/POSTerLDP
6 https://github.com/noorbakerally/HubbleLDP
7 http://opensensingcity.emse.fr/ldpdfend/tourism62/d3/catalog
8 https://tourisme62.opendatasoft.com/api/v2/catalog/exports/ttl

4 A Workflow for generation of LDP

Fig. 3: Screenshot of HubbleLDP

4 Demonstration

We perform several experiments to show that our approach can significantly automatize
the generation of LDPs from static, dynamic and heterogeneous data sources while keep-
ing the design loosely coupled from the implementation. A description of all these experi-
ments can be found on our GitHub page9. Below, we describes some of these experiments.

Reusability of design documents We perform two experiments to show that design
documents are indeed reusable. In the first experiment10, we consider 22 DCAT
datasets from data portals as input data sources along 5 design documents. Every design
document is applied of all data sources showing their reusability and on every data source,
5 design documents are applied showing the flexibility. In all, 110 LDPs are generated.
In the second experiment11, we consider two generic design documents that can we
reused on RDF graph that uses RDFS/OWL vocabularies and apply them on one input
data source to generate two LDPs with different designs. These two experiments shows
that the design is highly reusable and not tighly coupled to any specific implementation.

Heterogeneous data sources 12 Handling heterogeneity of data portals is demonstrated
by doing deploying 2 datasets,in JSON and CSV formats, via an LDP. In the design
document, the original data source is specified together with a lifting rule. Using

9 https://github.com/noorbakerally/LDPDatasetExamples
10 https://tinyurl.com/y9rhgs6g
11 https://tinyurl.com/yaoyt6kt
12 https://tinyurl.com/yd8auvp2

A Workflow for generation of LDP 5

SPARQL-Generate, the RDF data is generated and used by ShapeLDP to generate
the LDP dataset which is finally deployed as an LDP using InterLDP.

Dynamic data sources 13 Then, we use a dataset which is being updated on a real-time ba-
sis and deploy it via an LDP to show that our approach can cope with hosting constraints.
Using dynamic evaluation in ShapeLDP, the dynamic LDP dataset is generated and used
by InterLDP to expose the LDP. Generating response for LDP-RSs takes more time be-
cause their content are generated at the query time using real-time data from the source.

Compatibility with existing LDP implementations 14 To show that our approach is
compatible with existing LDP servers, we use POSTerLDP to deploy 2 LDPs over
LDP servers that are instances of Apache Marmotta and Gold, both of them being
reference implementation of the LDP standard.

5 Conclusion and Future Work

Linked Data Platforms can potentially ease the work of data consumers, but there is
not much support from implementations to automate the generation and deployment
of LDPs. Considering this, we proposed an approach, the LDP generation workflow,
whose core is a language, LDP-DL, to generate LDPs. We describe the approach, give
an implementation of it and demonstrates its ability to generate LDPs from static,
dynamic, heterogeneous data sources while keeping the design loosely coupled from the
implementation. Several improvements can be envisaged such as considering new design
aspects (access rights, pagination etc.), support non-RDF sources and other types of
LDP containers which we intend to consider in future versions.

Acknowledgments This work is supported by grant ANR-14-CE24-0029 from Agence
Nationale de la Recherche for project OpenSensingCity.

References

1. N. Bakerally. Towards automatic deployment of linked data platforms. In ISWC Doctoral
Consortium, 2017.

2. N. Bakerally. LDP-DL: RDF Syntax and Mapping to Abstract Syntax. Technical report,
Mines Saint-Étienne, 2018. https://w3id.org/ldpdl.

3. N. Bakerally and A. Zimmermann. A system to automatize the deployment of data in
linked data platforms. In ISWC 2017 Posters & Demo, 2017.

4. N. Bakerally, A. Zimmermann, and O. Boissier. LDP-DL: A language to define
the design of Linked Data Platforms. Technical report, Mines Saint-Étienne, 2018.
http://w3id.org/ldpdl/technical_report.pdf.

5. R. B. France and B. Rumpe. Model-driven development of complex software: A research
roadmap. In FOSE, 2007.

6. M. Lefrançois, A. Zimmermann, and N. Bakerally. A SPARQL extension for generating
RDF from heterogeneous formats. In ESWC, 2017.

7. S. Speicher, J. Arwe, and A. Malhotra. Linked Data Platform 1.0, W3C Recommendation
26 February 2015. Technical report, W3C, 2015.

8. T. Stahl, M. Volter, J. Bettin, A. Haase, and S. Helsen. Model-driven software development:
technology, engineering, management. Pitman, 2006.

13 https://tinyurl.com/yb6cl3r7
14 https://tinyurl.com/yc9yg8nz

