
Ulysses: an Intelligent client for replicated Triple
Pattern Fragments

Thomas Minier1, Hala Skaf-Molli1, Pascal Molli1, and Maria-Ester Vidal2

1 LS2N, University of Nantes, Nantes, France
firstname.lastname@univ-nantes.fr

2 TIB Leibniz Information Centre For Science and Technology
University Library & Fraunhofer IAIS, Germany

Maria.Vidal@tib.eu

Abstract. Ulysses is an intelligent TPF client that takes advantage
of replicated datasets to distribute the load of SPARQL query process-
ing and provides fault-tolerance. By reducing the load on a TPF server,
Ulysses improves the Linked Data availability and distributes the finan-
cial costs of queries execution among data providers. This demonstration
presents the Ulysses web client and shows how users can run SPARQL
queries in their browsers against TPF servers hosting replicated data. It
also provides various visualizations that show in real-time how Ulysses
performs the actual load distribution and adapts to network conditions
during SPARQL query processing.

Keywords: Semantic Web, Triple Pattern Fragments, Intelligent client,
Load balancing, Fault tolerance, Data Replication

1 Introduction

We proposed Ulysses [1], a replication-aware intelligent TPF client that dis-
tributes the load of SPARQL query processing across heterogeneous replicated
TPF servers. Ulysses relies on a light-weighted cost-model for computing servers
processing capabilities and a client-side load balancer to distribute SPARQL
query processing and provides fault tolerance during query processing.

Consider the SPARQL query Q1 in Figure 1, and the two servers S1 and
S2 publishing a replica of the DBpedia 2015 dataset, hosted by DBpedia 3 and
LANL Linked Data Archive 4, respectively. Executing Q1 with the regular TPF
client [4] on S1 alone generates 442 HTTP calls, takes 7s in average, and
returns 222 results. Executing the same query as a federated SPARQL query on
both S1 and S2 generates 478 HTTP calls on S1 and 470 HTTP calls on
S2, returns 222 results, and takes 25s in average. This is because existing TPF
clients do not support replication nor client-side load balancing [1].

As Ulysses is aware that datasets hosted at S1 and S2 are replicated, it only
generates 442 HTTP calls that are distributed between servers according to
3 http://fragments.dbpedia.org/
4 http://fragments.mementodepot.org/

http://fragments.dbpedia.org/
http://fragments.mementodepot.org/


2 Thomas Minier et al.

their processing capabilities and network latencies. If the servers are not loaded,
the performances of Ulysses are similar to those of the regular TPF client
p 7sq without replication. However, if the servers are loaded, Ulysses improves
significantly the performances thanks to load-balancing.

PREFIX dbo : <ht tp : // dbped ia . org / o n t o l o g y/>
PREFIX r d f s : <ht tp : //www. w3 . org /2000/01/ rd f ´schema#>
SELECT DISTINCT ? s o f t w a r e ?company WHERE {

? s o f t w a r e dbo : d e v e l o p e r ?company . # tp1
?company dbo : l o c a t i o n C o u n t r y ? c o un t r y . # tp2
? c o u n t r y r d f s : l a b e l " France "@en . # tp3

}

Fig. 1: SPARQL query Q1 that finds all softwares developed by French compag-
nies

Using replicated servers, Ulysses prevents a single point of failure server-
side, improves the overall availability of data, and distributes the financial costs
of queries execution among data providers.

This demonstration presents the Ulysses web client. It details which infor-
mations are collected by Ulysses about servers in real-time, how the cost model
is recomputed, and how the load of SPARQL query processing is balanced among
replicated servers through different real-time visualizations. Finally, Ulysses re-
actions in presence of servers failure are illustrated.

2 Overview of Ulysses client

The Ulysses web client is available online at http://ulysses-demo.herokuapp.
com. In order to distribute the load of SPARQL query processing across hetero-
geneous TPF servers hosting replicated data, it relies on three key ideas detailed
in [1]. In next sections, we provides a brief overview of key ideas and how they
are integrated in the Ulysses web client5.

2.1 Replication-aware source selection

Ulysses uses a replication-aware source selection algorithm to identify which
TPF servers can be used to distribute evaluation of triple patterns during SPARQL
query processing, based on the replication model introduced in [2,3].

This replication model allows to describe replicated datasets using replicated
fragment and a fragment mapping. A fragment is defined as 2-tuple : the author-
itative source of the fragment, and a triple pattern met by the fragment’s triple.
A fragment mapping is a function that maps each fragment to a set of TPF
5 The open-source Ulysses client is available at https://github.com/Callidon/

ulysses-tpf, under MIT license.

http://ulysses-demo.herokuapp.com
http://ulysses-demo.herokuapp.com
https://github.com/Callidon/ulysses-tpf
https://github.com/Callidon/ulysses-tpf


Ulysses: an Intelligent client for replicated Triple Pattern Fragments 3

servers. Using these information, Ulysses is able to compute relevant sources
for all triple pattern in a SPARQL query.

Consider again the two servers S1, S2 and the SPARQL query Q1 in Figure 1.
Only one fragment f1 “ x http://fragments.dbpedia.org/2015-10/en, ?s ?p ?oy
is defined to indicate a total replication. A fragment mapping F maps f1 to
the set tS1, S2u. Thus, all RDF triples met by every triple pattern of Q1 are
replicated by both DBpedia and LANL servers.

For simplicity, in this demonstration we only consider the scenario with total
replication. Consequently, the evaluation a triple pattern of the query Q1 will
be distributed between servers DBpedia and LANL.

2.2 A cost-model for estimating servers processing capabilities

Ulysses uses response times of HTTP requests performed against TPF servers
during query processing as probes to accurately estimate the processing capa-
bilities of a server. The response time of each request is used to compute the
throughput of a server, i.e., the number of results server per unit of time by a
server. As SPARQL query processing with the TPF approach requires to send
many requests to a server in order to evaluate triple patterns, Ulysses can keep
the servers throughputs updated in real-time without additional probing. This
can also easily detect load spikes or server failures.

Servers’ throughputs are used to compute a cost-model that define a capability
factor of each TPF server. This capability factor determines the load distribution
among servers: a server with a high capability factor has more chance to be
selected to evaluate a triple pattern as detailed in Section 2.3.

Fig. 2: Ulysses cost-model, updated in real-time

Figure 2 shows a real-time estimation of servers loads during execution of
query Q1 of Figure 1 against S1 and S2. S1 is slightly faster to access than S2,
but as the latter serves five times more results per access (Page size column), S2
has a better throughput than S1. As, S2 has a better capability factor than S1,
it will receive approximately 75% of the query load, while S1 will approximately
receive the remaining 25% (Estimated load column)

http://fragments.dbpedia.org/2015-10/en


4 Thomas Minier et al.

2.3 Adaptive client-side load balancing with fault tolerance

Ulysses uses an adaptive load-balancer to perform load balancing among repli-
cated servers. Each evaluation of a triple pattern scheduled by the client is sent
to a server selected using a weighted random algorithm, inspired by the Smart
clients approach [5]. The probability of selecting a server is proportional to its
processing capabilities, according to Ulysses cost-model.

This probability distribution ensures that each TPF server will only process
an amount of requests proportional to its processing capabilities, without concen-
trating all the load of query processing on the most performant servers. Ulysses
load-balancer also provides fault-tolerance, by re-scheduling failed HTTP re-
quests using available replicated servers.

Fig. 3: Metrics recorded by Ulysses and used to perform load-balancing during
SPARQL query processing

Figure 3 shows the metrics displayed in real-time by the Ulysses web client
during SPARQL query processing of Q1, distributed among S1 and S2. We see
that the server throughputs and capability factors of both servers remain close
at the start of query processing (Server access times and Servers capability
factors). However, after 18 seconds, S1 access times increase, so S2 became more
efficient than S1, causing its capability factor to rise. Thus, the load distribution
is affected in real-time, and, at the end of query processing, we see that S2 has
received more HTTP requests (Number of HTTP requests per server).



Ulysses: an Intelligent client for replicated Triple Pattern Fragments 5

3 Demonstration scenario
In the context of ESWC 2018, we would like to run a live experiment that anyone
can join. We will tweet a link that participants can click to access Ulysses online
demonstration, using their laptops or smartphones. Then, they will be able to
submit SPARQL queries against a set of TPF servers hosting replicated data. We
will provide a selection of replicated TPF servers, hosting replicas of DBpedia
and WatDiv datasets, with some SPARQL queries as a quick-start. Participants
will also be able to use their own set of TPF servers and SPARQL queries.

In this scenario, participants will be able to see how Ulysses keeps its cost-
model updated in real-time and how it benefits of this to distribute the load
of query processing, using visualizations presented in Figure 2 and Figure 3.
Additionally, we will also provide replicated TPF servers that can be shutdown
in order to simulate failures. Participants will be able to see how Ulysses is able
to continue query processing after a server failure, by re-distributing the load
using available servers.

4 Conclusion
In this demonstration, we presented the Ulysses web client that enables Web
Browsers to perform client-side load balancing and provides fault tolerance
when evaluating SPARQL queries against TPF servers hosting replicated data.
Real-time visualizations allow to observe how Ulysses distributes the load of
SPARQL query processing across replicated TPF servers according to their pro-
cessing capabilities, and adapts to failures or variations in network conditions.

Acknowledgments This work is partially supported through the FaBuLA
project, part of the AtlanSTIC 2020 program.

References
1. Minier, T., Skaf-Molli, H., Molli, P., Vidal, M.: Intelligent clients for replicated triple

pattern fragments. In: Proceedings of the 15th Extended Semantic Web Conference
(ESWC 2018) (2018)

2. Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Federated sparql queries pro-
cessing with replicated fragments. In: International Semantic Web Conference. pp.
36–51. Springer (2015)

3. Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Decomposing federated queries
in presence of replicated fragments. Web Semantics: Science, Services and Agents
on the World Wide Web 42, 1–18 (2017)

4. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: A low-
cost knowledge graph interface for the web. Web Semantics: Science, Services and
Agents on the World Wide Web 37, 184–206 (2016)

5. Yoshikawa, C., Chun, B., Eastham, P., Vahdat, A., Anderson, T., Culler, D.: Us-
ing smart clients to build scalable services. In: Proceedings of the 1997 USENIX
Technical Conference. p. 105. CA (1997)


	Ulysses: an Intelligent client for replicated Triple Pattern Fragments

