
Simplified SPARQL REST API
CRUD on JSON Object Graphs via URI Paths

Markus Schröder1, Jörn Hees1, Ansgar Bernardi1,
Daniel Ewert2, Peter Klotz2, and Steffen Stadtmüller2

1 German Research Center for Artificial Intelligence GmbH (DFKI)
{markus.schroeder, joern.hees, ansgar.bernardi}@dfki.de

2 Robert Bosch GmbH
{daniel.ewert, peter.klotz, steffen.stadtmueller}@de.bosch.com

Abstract. Within the Semantic Web community, SPARQL is one of the
predominant languages to query and update RDF knowledge. However,
the complexity of SPARQL, the underlying graph structure and various
encodings are common sources of confusion for Semantic Web novices.
In this paper we present a general purpose approach to convert any given
SPARQL endpoint into a simple to use REST API. To lower the initial
hurdle, we represent the underlying graph as an interlinked view of nested
JSON objects that can be traversed by the API path.

Keywords: SPARQL, REST API, URI, JSON, CRUD, Query, Update

1 Introduction

Nowadays, the majority of developers already know how to use web technolo-
gies such as REST APIs and JSON. However, in order to use Semantic Web
technologies, they typically still need extensive additional training. Before being
able to perform simplistic CRUD (create, read, update, delete) workflows, they
first need to learn about RDF basics, URIs, Literals, BNodes and how they’re
used to model knowledge as a graph of triples (as opposed to more often used
JSON representations). Further, in the process newcomers are overwhelmed with
a multitude of encodings, serialization and result formats, before finally being
able to interact with a triple store via SPARQL Update (and to understand what
they are doing).

In this paper, we present an approach that aims to reduce this initial hurdle
to use semantic technologies: We would like to allow Semantic Web newcomers
to interact with a SPARQL endpoint without requiring them to go through
extensive training first. To reach this goal, our approach transforms and simplifies
a given SPARQL endpoint into a generic path based JSON REST API. During
the design, we focused on simple CRUD workflows. To reduce complexity, we
decided against attempting to cover all SPARQL capabilities, but instead provide
a trade-off between simplicity and expressivity. We use an easy to understand
path metaphor to translate REST calls into corresponding SPARQL queries.
Users can conveniently follow connections between the returned object views by

/class /dbo:Country /dbr:Germany /dbo:capital /dbr:Berlin /rdfs:label

"ids": [
 "rdf:Type",
 "foaf:Person",
 "dbo:Country",
 ...
]

"ids": [
 "dbr:Germany",
 "dbr:France",
 "dbr:Spain",
 ...
]

"id-map": {
 "dbo:capital": {
 "ids": ["dbr:Berlin"]
 },
 "rdfs:label": {
 "values": [
 {
 "value": "Germany",
 "datatype":
 "rdf:langString",
 "language": "en"
 }, ...
]
 }, ... }

"ids": [
 "dbr:Berlin"
]

"id-map": {
 "rdf:type": {
 "ids": [
 "dbo:City",
 ...
]
 },
 "rdfs:label": {
 "values": [
 {
 "value": "Berlin",
 "datatype":
 "rdf:langString",
 "language": "en"
 }, ...
]
 },
 ...
}

"values": [
 {
 "datatype":
 "rdf:langString",
 "language": "en",
 "value": "Berlin"
 },
 {
 "datatype":
 "rdf:langString",
 "language": "de",
 "value": "Berlin"
 },
 ...
]

1

1 2 3 4 5 6

2

4

3 5 6

Fig. 1. Illustration of basic REST API usage. Shown are excerpts of the JSON results
for the different paths. Returned ids can conveniently be chained to walk the graph.

iteratively extending the path of their requests. The resulting SPARQL response
is translated back into an easy to understand and possibly nested JSON format.

A simple example can be found in Figure 1. To get a list of all countries,
users can access /class/dbo:Country. Chaining one of the returned ids, they
can then access /class/dbo:Country/dbr:Germany and subsequently /class/dbo:
Country/dbr:Germany/dbo:capital to arrive at /class/dbo:Country/dbr:Germany/
dbo:capital/dbr:Berlin (or alternatively /resource/dbr:Berlin).

An online demo can be found at http://purl.com/sparql-rest-api.

2 Related Work

Similarly to Battle and Benson [1] our approach offers simple access based on
class and resource entry points. However, our approach significantly extends the
expressiveness by allowing arbitrary length paths to walk the graph and us-
ing wildcards and property paths. Further our serialization format consequently
abstracts away from triples, as will be detailed in the following section.

Anticipating SPARQL Update, Wilde and Hausenblas [7] discuss application
of REST to SPARQL, but users would still have to master SPARQL and write
RDF statements. The BASILar approach [2] builds Web APIs on top of SPARQL
endpoints by generating predefined REST resources. Similarly, grlc [6] builds
Web APIs from SPARQL queries stored on GitHub. [3] describes a mapping
approach from CRUD HTTP requests to SPARQL queries while [4] maps prede-
fined REST calls to SPARQL queries, too. However, to work, these approaches
need manual, up front definitions of mappings or SPARQL queries. Our API
path to SPARQL mapping can be compared with RDF Path languages3.

Summarizing, in contrast to the mentioned works our approach provides a
zero-configuration REST to SPARQL conversion (evaluated during runtime) and
uses easily understandable JSON objects (instead of triples).
3 https://www.w3.org/wiki/RdfPath

http://173.212.240.179:61001/api/class/dbo:Country
http://173.212.240.179:61001/api/class/dbo:Country/dbr:Germany
http://173.212.240.179:61001/api/class/dbo:Country/dbr:Germany/dbo:capital
http://173.212.240.179:61001/api/class/dbo:Country/dbr:Germany/dbo:capital
http://173.212.240.179:61001/api/class/dbo:Country/dbr:Germany/dbo:capital/dbr:Berlin
http://173.212.240.179:61001/api/class/dbo:Country/dbr:Germany/dbo:capital/dbr:Berlin
http://173.212.240.179:61001/api/resource/dbr:Berlin
http://purl.com/sparql-rest-api
https://www.w3.org/wiki/RdfPath

3 Approach

As mentioned in the introduction, our approach aims to reduce complexity for
Semantic Web newcomers by providing a simple to use, generic path based JSON
REST API interface for a given SPARQL endpoint4. To achieve this, we (bidirec-
tionally) translate5 between the RDF predominant way of modelling knowledge
in graph form and object oriented knowledge representations. The latter allows
an easy to understand, nested serialization as JSON, which plays well together
with our path walking metaphor.

Entry Points and Path Structure. Focusing on common use-cases, our API
interface provides two entry points: /class and /resource. The former is used
to browse instances of a known class, while the latter queries a resource by its
known CURIE. An excerpt of the API’s path grammar is shown in Listing 1.1.
We allow arbitrary length traversal of the underlying graph by using the easy
to understand folder metaphor: By alternating resources (RES) and properties
(PROP) using the PATH rule we permit users to navigate the graph.

Listing 1.1. Excerpt of the API Path Grammar
API_PATH = "/ api " (CLASS | RESOURCE)
CLASS = "/ c l a s s " RES PATH RQL?
RESOURCE = "/ re sou r c e " PATH RQL?
PATH = ("/" RES "/" PROP)∗ ("/" RES) ?

Resulting JSON Syntax. As result format, we refrain from using JSON-LD,
as it is an RDF (triple) serialization format driven by RDF specifics and often
confuses novices expecting a simple, nested, object oriented format. Instead, we
use simple JSON objects, which are modeled along the outgoing edges of a node
x (so all triples of the form x ?p ?o). We refer to nodes as “ids” using their
CURIEs, to stress that users are not required to actually know that these are
CURIEs or URIs (to them it is just an identifier). In simple use-cases the JSON
object response contains one of two JSON array fields (ids or values) or a
JSON object id-map, as can be seen in Figure 1. For consistency reasons, single
id or value results are represented as arrays as well.

Resources are listed in ids using their CURIEs. This reduces the need for
escaping in paths, and generates more readable paths allowing easy manual entry.
Literals are listed in values. To allow correct round-tripping, each of them is
represented as object containing its value, language and datatype, inspired by
the SPARQL JSON result representation. id-maps are used to map ids (resources
or properties) to further components, for example to list a resource’s properties.
As we allow unbounded nested results, id-map naturally contain ids, values,
id-map and value-map (see further below).

HTTP CRUD Methods. Besides GET, our API supports POST, PUT and
DELETE requests. The payload of POST and PUT is expected to be of the
same structure as the GET results, allowing seamless round-trips. In general, all
4 Our prototype only needs the endpoint’s URI and a list of predefined namespaces.
5 Transforming the API path to SPARQL and the result sets back to our JSON format.

http://173.212.240.179:61001/api/class
http://173.212.240.179:61001/api/resource

/resource/*/dbo:capital/*/(rdfs:label|skos:prefLabel)

{
 "id-map": {
 "dbr:Germany": {
 "id-map": {
 "dbr:Berlin": {
 "values": [
 {"value": "Berlin", "datatype": "rdf:langString", "language": "en"},
 {"value": "Berlin", "datatype": "rdf:langString", "language": "de"},
 ...
]}}}, ... }}

1

1 2 3

2

3

Fig. 2. Example of path extensions using wildcards and a property path: The example
lists all object ids with an outgoing dbo:capital edge, their corresponding linked object
ids and their corresponding rdfs:label or skos:prefLabel as values. As can be seen
each * introduces an extra nesting level, while property paths (as in SPARQL) are
transparently collapsed in the result.

modifying requests extend information from the body with that encoded in the
path (e.g., /class/X/x implicitly adds the triple x a X.). POST requests create
a new resource and generate (and return) a new random identifier for the object
specified in the body, while PUT requests create or update an object identified by
the path. Depending on the path depth, DELETE requests delete a full resource
(depth: 1, all in- and outgoing edges), the specified outgoing properties (depth:
2) or one specific triple (depth: 3).

Extended Expressiveness: Wildcards, Property Paths & RQL. Apart
from these basic features, we extended our API with a couple of noteworthy fea-
tures that seamlessly integrate into the path metaphor. A very powerful feature
is the well known Bash wildcard *, which we allow in any RES and PROP posi-
tion in the path. The asterisk is interpreted in an “all of them” way, introducing
an additional nesting level for each asterisk in the resulting JSON. It allows to
quickly create a partial view of nested objects, as can be seen in Figure 2.

As also shown in Figure 2, we additionally permit the use of SPARQL
property paths6 in every PROP position by using surrounding brackets (e.g.
/:x/(foaf:name|rdfs:label)/). Reminding of regular expressions, this enables
queries containing alternatives, inverse directions and multiple hops. Similarly
to SPARQL, the followed property path is not shown in the result (collapsed).

Combining wildcards and inverse property paths also allows us to step over
literals: For example, /resource/*/foaf:name/*/(^rdfs:label) will list all object
ids that link to values via foaf:name, the corresponding Literals, and (other)
object ids which use the same literal as rdfs:label. As Literals are complex
objects they cannot appear as keys in JSON syntax. Hence, we introduce a last
additional keyword to our JSON result format: value-map, which represents
mappings of values to further components as a list of pairs.

Apart from wildcards and property paths, we allow the API paths to be
extended with Resource Query Language (RQL)7 methods, such as regex, sort,
limit and aggregations like count, sum and avg.
6 https://www.w3.org/TR/sparql11-query/#propertypaths
7 https://github.com/persvr/rql

http://dbpedia.org/ontology/capital
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2004/02/skos/core#prefLabel
http://173.212.240.179:61001/api/resource/*/foaf:name/*/(^rdfs:label)
http://xmlns.com/foaf/0.1/name
http://www.w3.org/2000/01/rdf-schema#label
https://www.w3.org/TR/sparql11-query/#propertypaths
https://github.com/persvr/rql

Further Features: Batch & BNode Handling. We additionally imple-
mented batch processing in order to bundle many similar requests into one and
to reduce connection overhead. To avoid URI length restrictions and because
processing a batch usually is a procedure, we implement it via JSON-RPC8.
Moreover, a /namespace entry point can be used to to resolve prefixes, e.g.
/namespace/rdfs,owl. Our API handles BNodes via their fixed (skolem) URIs
as mentioned in [5] and supported by many triplestores (e.g., CURIE _:b1 ⇔
URI <_:b1>)). This allows users to use and traverse BNodes like normal URIs.

4 Conclusion and Outlook

In this paper we presented an approach to turn any given SPARQL endpoint
into a simple to use JSON REST API. To achieve this, our approach translates
between CRUD API requests and SPARQL (Update) queries. The API paths
allow users to simply navigate the underlying graph to their point of interest.
The paths further allows wildcards and SPARQL property path components,
seamlessly integrated in the API as deeper nestings of the resulting JSON.

While the development of our approach already embeds a lot of user feedback,
in the future we would like to enhance our approach by adding further ideas.
Apart from improvements in the areas of error messages and content negotiation,
we especially would like to focus on supporting named graphs, introducing path
based permissions and easy to use CRUD for simplistic TBox management.

A live demo showing various examples and their corresponding generated
SPARQL queries, the source code, API docs and further information are available
online: http://purl.com/sparql-rest-api

References

1. Battle, R., Benson, E.: Bridging the semantic Web and Web 2.0 with Representa-
tional State Transfer (REST): Semantic Web and Web 2.0. Web Semantics: Science,
Services and Agents on the World Wide Web pp. 61–69 (2008)

2. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar approach for building web APIs
on top of SPARQL endpoints. CEUR Workshop Proceedings 1359, 22–32 (2015)

3. Garrote, A., García, M.N.: RESTful writable APIs for the web of linked data using
relational storage solutions. CEUR Workshop Proceedings 813 (2011)

4. Hopkinson, I., Maude, S., Rospocher, M.: A simple API to the KnowledgeStore.
CEUR Workshop Proceedings 1268, 7–12 (2014)

5. Mallea, A., Arenas, M., Hogan, A., Polleres, A.: On Blank Nodes. In: The Semantic
Web - ISWC 2011. LNCS, vol. 7031, pp. 421–437. Bonn (2011)

6. Meroño-Peñuela, A., Hoekstra, R.: Grlc makes github taste like linked data APIs.
Lecture Notes in Computer Science 9989, p. 342–353 (2016)

7. Wilde, E., Hausenblas, M.: RESTful SPARQL? You Name It! — Aligning SPARQL
with REST and Resource Orientation. WEWST 2009 pp. 39–43

8 http://www.jsonrpc.org/specification

http://173.212.240.179:61001/api/namespace
http://173.212.240.179:61001/api/namespace/rdfs,owl
http://purl.com/sparql-rest-api
http://www.jsonrpc.org/specification

	Simplified SPARQL REST API

