
ViziQuer: a Web-based Tool for

Visual Diagrammatic Queries over RDF Data

Kārlis Čerāns1,2,4, Agris Šostaks1,2, Uldis Bojārs1,2, Jūlija Ovčiņņikova1,2,
Lelde Lāce1,2, Mikus Grasmanis1, Aiga Romāne1, Artūrs Sproģis1, Juris Bārzdiņš3

1 Institute of Mathematics and Computer Science, University of Latvia
2 Department of Computing, University of Latvia

3 Department of Medicine, University of Latvia
4karlis.cerans@lumii.lv

Abstract. We demonstrate the open source ViziQuer tool for web-based creation
and execution of visual diagrammatic queries over RDF/SPARQL data. The tool
supports the data instance level and statistics queries, providing visual counter-
parts for most of SPARQL 1.1 select query constructs, including aggregation and
subqueries. A query environment can be created over a user-supplied SPARQL
endpoint with known data schema (a data schema exploration service is available,
as well). There are pre-defined demonstration query environments for a mini-
university data set, a fragment of synthetic similar to reality hospital data set, and
a variant of Linked Movie Database RDF data set.

Keywords: Visual query tool, ad-hoc queries, rich queries, RDF data, SPARQL

1 Introduction

The textual SPARQL 1.1 [1] select query language over RDF data allows creating rich
data selection queries, possibly involving subqueries, aggregations, unions and rich ex-
pression notation. The visual/diagrammatic environments for query creation support,
such as Optique VQs [2], Query VOWL [3] and early versions of ViziQuer [4], how-
ever, stay significantly behind the expressivity of SPARQL 1.1 select queries by not
supporting e.g. the subqueries and aggregation. The possibility of introducing aggre-
gated fields and rich expression notation into a diagrammatic UML-style RDF data
query environment has been shown in the earlier work of authors [5,6], while [7] pro-
vides a more refined set of extended UML class diagram constructs for visual SPARQL
query definition including: (i) separation of aggregated and grouping fields in query
node attribute lists; (ii) visual notation for subqueries, (iii) separate query control nodes
for query structuring and (iv) integrated textual SPARQL fragments.

We describe and demonstrate here the web-based open source ViziQuer tool sup-
porting the notation of [7] and providing basic user services both for query environment
configuration and visual query creation. The resource point http://viziquer.lumii.lv pro-
vides links both to the online tool and the source code repository.

We provide preliminary results on query notation and tool usability, as well.
In what follows, Section 2 briefly reviews the visual query notation, Section 3 de-

scribes the query tool usage and implementation and Section 4 concludes the paper.

2 Visual Notation Overview

For query notation illustration we use a mini-hospital data schema, extracted from [8]
and depicted in UML style notation in Fig. 1. The role names, if not specified, coincide
with target class names with lowercase first letter; the attributes and roles are assumed
by default to have minimum and maximum cardinalities 1.

HospitalEpisode
referringPhysician:CPhysician[0..1]

responsiblePhysician:CPhysician

dischargeReason:{"cured", "deceased", "other"}[0..1]

lengthInDays:integer

totalCost:decimal

caseRecordNo:integer

TreatmentInWard
attendingPhysician:CPhysician

ward:string

orderNo:integer

Patient
name:string

surname:string

gender:{"male", "female"}

birthDate:date

<<EnumClass>>

CPhysician
personCode:string

name:string

surname:string

**

Figure 1. Mini-hospital data schema

A basic visual query (cf. [4,7]) is a UML class diagram style graph with the nodes

describing data instances, the edges describing their connections and the attributes
forming the query selection list from the node instance attributes and their expressions;
every node can specify both the instance class and additional conditions on the instance.
One of the graph nodes is the main query node (shown as orange round rectangle in the
diagram); the structural edges (all edges except the condition ones) within the graph
form its spanning tree with the main query node being its root.

Figure 2 shows initial query examples following the basic class-attribute-link-con-
dition paradigm (a), similar to [2,4], and simple statistics queries (b) and (c), as in [7]:

Figure 2. Class-attribute-link-condition and statistics queries

(a) select top 10 most expensive hospital episodes with discharge reason specified,

lasting for at least 10 days, for patients born in 2000; show episode total cost,

case record number, discharge reason and all attributes of referring physician,

if specified;

(b) count the hospital episodes lasting for at least 10 days and

(c) compute the hospital episode count and average length in days, grouped by the

episode discharge reason.

The visual notation supports links that are required, optional and negated. The at-
tributes in node fields by default are optional, not to bypass entire solution rows because
of missing attribute values, an attribute is marked as required by a {+} decoration in
the visual notation is (cf. dischargeReason attribute in Fig.2 (a)).

Figure 3 demonstrates more advanced query examples using subqueries (edges with
black bullets at the end) (a), control nodes ([] stands for an outer query scope for col-
lecting, filtering, projecting, further aggregating of subquery result lists) and non-model
links (denoted by ++ in (b)), as well as schema-level variables (c):

(a) count the patients with at least 3 hospital episodes having at least 5 wards each;

(b) count all wards with more than 1000 treatment in ward cases, and

(c) select all data classes together with their instance count.

Figure 3. Advanced query constructs

For more details and further notation examples one may consult [7], as well as the
demonstration examples provided within the query environment.

3 Query Tool Usage and Implementation

The user’s work with the ViziQuer tool is arranged in projects. Users can create projects
that consist of query diagrams each capable of hosting multiple queries. Each project
needs a supplied data schema and a SPARQL endpoint (pre-configured ViziQuer in-
stances with built in schema and endpoint information are possible, as well). There are
prototype services for ViziQuer schema extraction from an OWL ontology and from
SPARQL endpoint data.

A ViziQuer project needs also a SPARQL engine type to enable query translation
optimizations for vendor-specific SPARQL endpoints. The practical tool usage up to
now has been oriented towards OpenLink Virtuoso SPARQL endpoints, although a
“General SPARQL” option is available, as well.

Each query diagram allows for new query creation, starting from a query symbol
selection from the symbol palette (cf. Fig. 4), followed by class name condition, plain
and aggregate attribute setting using the property dialogues (there are basic suggestion
services for class and attribute names). Adding of another class into the query can be
performed by introducing the class via symbol palette, or by using the offered “Add
Link” service (cf. Fig. 4) offering the link names and their target classes making sense
in the context of the selected host class. The defined queries in the diagrams (either the
connected components or parts thereof) can be either translated into the textual
SPARQL form, or directly executed over the specified SPARQL endpoint.

There are available demonstration query environments for a mini-university data set,
a fragment of synthetic hospital data set resembling the data of Children’s hospital in
Riga, Latvia [8] and a variant of Linked Movie Database RDF data set [9].

The tool is created using ajoo – a generic platform for web-based diagrammatic tool
building [10]. The ViziQuer tool is defined within the platform by creating a JSON-
style configuration for the node, edge and compartment types in the diagrams, and writ-
ing JavaScript functions for the tool specific functionality, including query translation
into SPARQL. Ajoo and ViziQuer use Meteor framework [11] and MongoDB for dia-
gram storage and exchange, and for user management and collaboration features.

The ajoo framework and ViziQuer query tool are open source and have been made
available on GitHub, so enabling local installations of the ViziQuer query engine.

The tool architecture allows for de-coupling of the ajoo platform and custom dia-
gram handling code from the Meteor server, should there a need arise for integrating it
into some other diagram serving infrastructure.

Figure 4. Basic working environment

4 Conclusions

The presented ViziQuer tool demonstrates the feasibility of visual querying of the RDF
data just from a web browser window. The supported query notation allows visual cre-
ation of most of the SPARQL select query language constructs, including aggregates,
subqueries and query structuring [7]. The initial experiments with potential tool end
users without a formal IT background have indicated that this user group could well
read and understand e.g. the queries involving subquery construct formerly considered
to be out of scope for visual query formulation systems (cf. e.g [2]).

A preliminary query composition experiment with undergraduate 4th year IT students
at University of Latvia has indicated a potential usability of the visual notation and tool
for generally IT literate persons. The 14 student participants (with some background in
SQL and no specific training in RDF/SPARQL) were given brief introductions about
the hospital data model, RDF, SPARQL and ViziQuer (each about 10 minutes) and
then were split into two groups of 7 and given 10 query writing tasks. One group was
asked to create queries in ViziQuer and the other – using textual SPARQL notation.
After the training period students had 60 minutes to work on the assigned tasks. The
numbers of successfully completed tasks by the students in the visual notation group
were 10, 5, 5, 4, 4, 3, 2 (in average 4.7), while in the SPARQL group there were 5, 5,

3, 3, 2, 2, 1 completed tasks (in average 3.0). The ViziQuer group outperformed the
SPARQL group on all query subsets of data instance queries, simple aggregate queries
and queries with subquery structure.

It can be expected that the tool interface re-work that is to be provided as a future
work (the property sheets with very basic name suggestion services currently available)
would make the notation and tool a potential alternative or complement to other
SPARQL query creation approaches both for semantic technology experts and lay us-
ers. This future work involves also more definite usability tests that are to be run.

Acknowledgements

This work has been partially supported by research organization base financing at In-
stitute of Mathematics and Computer Science, University of Latvia and the University
of Latvia project AAP2016/B032 "Innovative information technologies”.

References

1. SPARQL 1.1 Query Language. W3C Recommendation 21 March 2013,
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

2. Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G.., Horrocks, I.: Experiencing
OptiqueVQS: A Multi-paradigm and Ontology-based Visual Query System for End Users.
Universal Access in the Information Society, March 2016, Volume 15, Issue 1, pp 129–152.

3. Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: Visual Composition of SPARQL
Queries. In: The Semantic Web: ESWC 2015 Satellite Events. LNCS, Vol.9341, pp. 62-66.
Springer, (2015), http://vowl.visualdataweb.org/queryvowl/

4. Zviedris, M., Barzdins, G.: ViziQuer: A Tool to Explore and Query SPARQL Endpoints. In:
The Semantic Web: Research and Applications, LNCS, Volume 6644, pp. 441-445, (2011)

5. Cerans, K., Ovcinnikova, J., Zviedris, M.: SPARQL Aggregate Queries Made Easy with
Diagrammatic Query Language ViziQuer. In: Proceedings of the ISWC 2015 Posters &
Demonstrations Track, CEUR Vol. 1486, (2015), http://ceur-ws.org/Vol-1486/paper_68.pdf

6. K.Čerāns, J.Ovčiņņikova. ViziQuer: Notation and Tool for Data Analysis SPARQL Queries.
In Proc. of VOILA '16, Kobe, Japan. CEUR Workshop Proceedings, vol. 1704, CEUR-
WS.org, 2016, pp.151-159, http://ceur-ws.org/Vol-1704/paper15.pdf

7. K.Cerans, J.Barzdins, A.Sostaks, J.Ovcinnikova, L.Lace, M.Grasmanis and A.Sprogis. Ex-
tended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web In
Voila!2017, CEUR Workshop Proceedings, Vol.1947, (2017) pp.87-98.

8. J.Barzdins, M.Grasmanis, E.Rencis, A.Sostaks, J.Barzdins, Ad-Hoc Querying of Semistar
Data Ontologies Using Controlled Natural Language. // Frontiers of AI and Applications,
Vol. 291, Databases and Information Systems IX, IOS Press, pp. 3-16, 2016,
http://ebooks.iospress.com/volumearticle/45695

9. Linked Movie Database. Downloaded from http://www.cs.toronto.edu/~oktie/linkedmdb/
10. A.Sprogis. ajoo: WEB Based Framework for Domain Specific Modeling Tools. // In: Fron-

tiers of AI and Applications, Vol. 291, Databases and Information Systems IX, IOS Press,
pp. 115-126, 2016, http://ebooks.iospress.com/volumearticle/45704

11. Strack, I. Getting Started with Meteor JavaScript Framework. Packt Publishing Ltd, 2012.

